Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.305
Filter
1.
Nat Food ; 5(4): 273, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38632462
2.
Sci Rep ; 14(1): 9174, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38649495

ABSTRACT

This study aimed to evaluate the efficacy of dielectric barrier discharge treatment (DBD) combined with phycocyanin pigment (PC) in extending the shelf life of Oncorhynchus mykiss rainbow fillets stored at 4 ± 0.1 °C. Microbiological, physicochemical, sensory and antioxidant properties were assessed over an 18-day storage period. The combined DBD and PC treatment significantly inhibited total viable counts and Psychrotrophic bacteria counts compared to the rest of the samples throughout storage. While Total Volatile Nitrogen concentrations remained below international standard until day 18, they exceeded this threshold in control sample by day 9. DBD treatment notably reduced Trimethylamine levels compared to controls (p < 0.05). PC and DBD combined inhibited DPPH and ABTS radical scavenging capacities by 80% and 85%, respectively, while demonstrating heightened iron-reducing antioxidant activity compared to controls. Analysis of 24 fatty acids indicated that PC mitigated DBD's adverse effects, yielding superior outcomes compared to controls. The ratio of n-3 to n-6 fatty acids in all samples met or fell below international standard. Thus, the combined use of DBD and PC shows promise in extending fillet shelf life by over 15 days at 4 °C.


Subject(s)
Food Preservation , Food Storage , Oncorhynchus mykiss , Phycocyanin , Animals , Food Storage/methods , Oncorhynchus mykiss/microbiology , Oncorhynchus mykiss/growth & development , Food Preservation/methods , Phycocyanin/pharmacology , Antioxidants/pharmacology , Plasma Gases/pharmacology , Seafood , Food Packaging/methods
3.
Compr Rev Food Sci Food Saf ; 23(3): e13346, 2024 May.
Article in English | MEDLINE | ID: mdl-38634193

ABSTRACT

Osmotic dehydration (OD) is an efficient preservation technology in that water is removed by immersing the food in a solution with a higher concentration of solutes. The application of OD in food processing offers more benefits than conventional drying technologies. Notably, OD can effectively remove a significant amount of water without a phase change, which reduces the energy demand associated with latent heat and high temperatures. A specific feature of OD is its ability to introduce solutes from the hypertonic solution into the food matrix, thereby influencing the attributes of the final product. This review comprehensively discusses the fundamental principles governing OD, emphasizing the role of chemical potential differences as the driving force behind the molecular diffusion occurring between the food and the osmotic solution. The kinetics of OD are described using mathematical models and the Biot number. The critical factors essential for optimizing OD efficiency are discussed, including product characteristics, osmotic solution properties, and process conditions. In addition, several promising technologies are introduced to enhance OD performance, such as coating, skin treatments, freeze-thawing, ultrasound, high hydrostatic pressure, centrifugation, and pulsed electric field. Reusing osmotic solutions to produce innovative products offers an opportunity to reduce food wastes. This review explores the prospects of valorizing food wastes from various food industries when formulating osmotic solutions for enhancing the quality and nutritional value of osmotically dehydrated foods while mitigating environmental impacts.


Subject(s)
Dehydration , Food Preservation , Humans , Desiccation , Water , Technology
4.
Food Microbiol ; 121: 104524, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38637086

ABSTRACT

Aspergillus flavus colonization on agricultural products during preharvest and postharvest results in tremendous economic losses. Inspired by the synergistic antifungal effects of essential oils, the aims of this study were to explore the mechanism of combined cinnamaldehyde and nonanal (SCAN) against A. flavus and to evaluate the antifungal activity of SCAN loading into diatomite (DM). Shriveled mycelia were observed by scanning electron microscopy, especially in the SCAN treatment group. Calcofluor white staining, transmission electron microscopy, dichloro-dihydro-fluorescein diacetate staining and the inhibition of key enzymes in tricarboxylic acid cycle indicated that the antifungal mechanism of SCAN against A. flavus was related to the cell wall damage, reactive oxygen species accumulation and energy metabolism interruption. RNA sequencing revealed that some genes involved in antioxidation were upregulated, whereas genes responsible for cell wall biosynthesis, oxidative stress, cell cycle and spore development were significantly downregulated, supporting the occurrence of cellular apoptosis. In addition, compared with the control group, conidia production in 1.5 mg/mL DM/cinnamaldehyde, DM/nonanal and DM/SCAN groups were decreased by 27.16%, 48.22% and 76.66%, respectively, and the aflatoxin B1 (AFB1) contents decreased by 2.00%, 73.02% and 84.15%, respectively. These finding suggest that DM/SCAN complex has potential uses in food preservation.


Subject(s)
Acrolein/analogs & derivatives , Aldehydes , Antifungal Agents , Aspergillus flavus , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Aflatoxin B1/metabolism , Food Preservation
5.
Compr Rev Food Sci Food Saf ; 23(3): e13334, 2024 May.
Article in English | MEDLINE | ID: mdl-38563107

ABSTRACT

Food waste and byproducts (FWBP) are a global issue impacting economies, resources, and health. Recycling and utilizing these wastes, due to processing and economic constraints, face various challenges. However, valuable components in food waste inspire efficient solutions like active intelligent packaging. Though research on this is booming, its material selectivity, effectiveness, and commercial viability require further analysis. This paper categorizes FWBP and explores their potential for producing packaging from both animal and plant perspectives. In addition, the preparation/fabrication methods of these films/coatings have also been summarized comprehensively, focusing on the advantages and disadvantages of these methods and their commercial adaptability. Finally, the functions of these films/coatings and their ultimate performance in protecting food (meat, dairy products, fruits, and vegetables) are also reviewed systematically. FWBP provide a variety of methods for the application of edible films, including being made into coatings, films, and fibers for food preservation, or extracting active substances directly or indirectly from them (in the form of encapsulation) and adding them to packaging to endow them with functions such as barrier, antibacterial, antioxidant, and pH response. In addition, the casting method is the most commonly used method for producing edible films, but more film production methods (extrusion, electrospinning, 3D printing) need to be tried to make up for the shortcomings of the current methods. Finally, researchers need to conduct more in-depth research on various active compounds from FWBP to achieve better application effects and commercial adaptability.


Subject(s)
60659 , Refuse Disposal , Animals , Food Preservation , Anti-Bacterial Agents , Fruit
6.
Food Chem ; 448: 139176, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38574719

ABSTRACT

Using 3D printing technology, a gelatin-polyvinyl alcohol­carbon dots (GPC) layer+corn starch-polyvinyl alcohol-cinnamon essential oil (CPC) layer active bilayer film with an external barrier function and an internal controlled-release effect was successfully produced for food preservation. The GPC film was provided with potent antioxidant and UV blocking properties by the banana peel carbon dots (CDs). The cinnamon essential oil (CEO) had the strongest interaction with the film matrix at 3% (w/w), causing the CPC film having the lowest surface wettability, good integrity, and lowest crystallinity. The CEO's stability and releasing effectiveness were greatly enhanced by the creation of a bilayer film. At 60% filling rate of the CPC layer, the bilayer film showed the highest CEO retention after drying and the best CEO release performance. Finally, the created active bilayer film was found to significantly improve the sensory quality stability of the spicy essential oil microcapsule powders. It also successfully extended the mangoes' shelf life by delaying browning and rot.


Subject(s)
Cinnamomum zeylanicum , Food Packaging , Gelatin , Musa , Oils, Volatile , Printing, Three-Dimensional , Starch , Oils, Volatile/chemistry , Food Packaging/instrumentation , Cinnamomum zeylanicum/chemistry , Gelatin/chemistry , Starch/chemistry , Musa/chemistry , Carbon/chemistry , Food Preservation/instrumentation , Food Preservation/methods , Quantum Dots/chemistry , Zea mays/chemistry
7.
Food Chem ; 448: 139185, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38574715

ABSTRACT

The impact of hydrogen (H2) producing magnesium (Mg) incorporation into minced beef meat (MBM) on the quality and safety of the product was investigated. The H2-producing Mg (H2-P-Mg)-incorporated MBMs were vacuumed (VP) and stored at 4 °C for 12 days. Other MBMs were vacuumed and gassed with H2 or N2. At the end of storage, the lowest browning index values were for H2 and H2-P-Mg samples. H2- PMg and VP methods generally decreased the counts of mesophilic and psychrotrophic bacteria and yeast molds and restricted the formation of thiobarbituric acid reactive substances and biogenic amines. Heat mapping, PCA, and multivariate analysis methods confirmed chemical analysis results. The volatile compounds were at their highest levels in the control samples at the end of storage, followed by H2, N2, H2-P-Mg, and VP samples. Using the H2-P-Mg method in MBM preparation could protect the quality characteristics and safety of the product during cold storage.


Subject(s)
Food Preservation , Food Storage , Hydrogen , Magnesium , Animals , Cattle , Hydrogen/metabolism , Hydrogen/analysis , Magnesium/analysis , Magnesium/metabolism , Food Preservation/methods , Cold Temperature , Meat Products/analysis , Meat Products/microbiology , Bacteria/metabolism , Bacteria/isolation & purification , Red Meat/analysis , Red Meat/microbiology
8.
J Texture Stud ; 55(2): e12830, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38581175

ABSTRACT

Freezing and blanching are essential processing steps in the production of frozen yellow peaches, inevitably leading to texture softening of the fruit. In this study, the synergistic mechanism of stem blanching, freezing conditions (-20°C, -40°C, -80°C, and liquid nitrogen [-173°C]), and sample sizes (cubes, slices, and half peaches) on macroscopic properties of texture, cellular structure, and ice crystal size distribution of frozen yellow peaches were measured. Blanching enhanced the heat and mass transfer rates in the subsequent freezing process. For nonblanched samples, cell membrane integrity was lost at any freezing rate, causing a significant reduction in textural quality. Slow freezing further exacerbated the texture softening, while the ultra-rapid freezing caused structural rupture. For blanched samples, the half peaches softened the most. The water holding capacity and fracture stress were not significantly affected by changes in freezing rate, although the ice crystal size distribution was more susceptible to the freezing rate. Peach cubes that had undergone blanching and rapid freezing (-80°C) experienced 4% less drip loss than nonblanched samples. However, blanching softened yellow peaches more than any freezing conditions. The implementation of uniform and shorter duration blanching, along with rapid freezing, has been proven to be more effective in preserving the texture of frozen yellow peaches. Optimization of the blanching process may be more important than increasing the freezing rate to improve the textural quality of frozen yellow peaches.


Subject(s)
Prunus persica , Steam , Freezing , Food Preservation , Ice
9.
Int J Biol Macromol ; 265(Pt 2): 131398, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38599903

ABSTRACT

This research aimed to assess the effects of flaxseed mucilage (Mu) coatings supplemented with postbiotics (P) obtained from Lactobacillus acidophilus LA-5 on various physical, biochemical, and microbial characteristics of strawberry fruits. Strawberry fruits were immersed for 2 min in Mu2.5 (2.5 % mucilage in distilled water), Mu5 (5 % mucilage in distilled water), P-Mu2.5 (2.5 % mucilage in undiluted postbiotics) and P-Mu5 (5 % mucilage in undiluted postbiotics) solutions and were stored at 4 °C and 85 RH for 12 days. All coatings were effective in reducing fungal count compared to the uncoated control fruits. Mu5 coating exhibited the highest efficacy, reducing fungal count by 2.85 log10 CFU/g, followed by Mu2.5 (1.47 log10 CFU/g reduction) and P-Mu2.5 groups (0.90 log10 CFU/g reduction). The fruits coated with edible coatings showed significant delays in the change of weight loss, pH, and total soluble solids as compared to the uncoated fruits. The coating containing postbiotics i.e., P-Mu5 also showed a significant increase in the total phenolic contents, total flavonoid content, antioxidant capacity, and total anthocyanin content at the end of storage relative to the uncoated fruits. Thus, Mu and P-Mu coatings may be a useful approach to maintaining the postharvest quality of strawberry fruits during cold storage.


Subject(s)
Flax , Fragaria , Food Preservation , Food Storage , Fragaria/chemistry , Polysaccharides/pharmacology , Water/pharmacology
10.
Food Res Int ; 181: 114114, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38448098

ABSTRACT

Hen egg white lysozyme (HEWL) is used as a food additive in China due to its outstanding antibacterial properties. It is listed as GRAS grade (generally recognized as safe) by the United States Food and Drug Administration (FDA, US) and has been extensively researched and used in food preservation. And the industrial production of HEWL already been realized. Given the complex food system that can affect the antibacterial activity of HEWL, and the limitations of HEWL itself on Gram-negative bacteria. Based on the structure and main biological characteristics of HEWL, this paper focuses on reviewing methods to enhance the stability and antibacterial properties of HEWL. Immobilization tactics such as chemically driven self-assembly, embedding and adsorption address the restriction of poor HEWL antibacterial activity effected by external factors. Both intermolecular and intramolecular modification strategies break the bactericidal deficiencies of HEWL itself. It also comprehensively analyzes the current application status and future prospects of HEWL in the food preservation. There was limited research on the biological methods in modifying HEWL. If the HEWL is genetically engineered, it can broaden its antimicrobial spectrum, improve its other biological activities, so as to further expand its application in the food industry. At present, research on HEWL mainly focused on its antibacterial properties, whereas its application in anti-inflammatory and antioxidant effects also presented great potential.


Subject(s)
Egg White , Muramidase , United States , Anti-Bacterial Agents/pharmacology , Food Preservation , Adsorption
11.
Int J Food Microbiol ; 415: 110645, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38430687

ABSTRACT

This study aimed to assess the growth of Pseudomonas spp. and psychrotrophic bacteria in chilled Pacu (Piaractus mesopotamicus), a native South American fish, stored under chilling conditions (0 to 10 °C) through the use of predictive models under isothermal and non-isothermal conditions. Growth kinetic parameters, maximum growth rate (µmax, 1/h), lag time (tLag, h), and (Nmax, Log10 CFU/g) were estimated using the Baranyi and Roberts microbial growth model. Both kinetic parameters, growth rate and lag time, were significantly influenced by temperature (P < 0.05). The square root secondary model was used to describe the bacteria growth as a function of temperature. Secondary models, √µ = 0.016 (T + 10.13) and √µ =0.017 (T + 9.91) presented a linear correlation with R2 values >0.97 and were further validated under non-isothermal conditions. The model's performance was considered acceptable to predict the growth of Pseudomonas spp. and psychrotrophic bacteria in refrigerated Pacu fillets with bias and accuracy factors between 1.24 and 1.49 (fail-safe) and 1.45-1.49, respectively. Fish biomarkers and spoilage indicators were assessed during storage at 0, 4, and 10 °C. Volatile organic compounds, VOCs (1-hexanol, nonanal, octenol, and indicators 2-ethyl-1-hexanol) showed different behavior with storage time (P > 0.05). 1H NMR analysis confirmed increased enzymatic and microbial activity in Pacu fillets stored at 10 °C compared to 0 °C. The developed and validated models obtained in this study can be used as a tool for decision-making on the shelf-life and quality of refrigerated Pacu fillets stored under dynamic conditions from 0 to 10 °C.


Subject(s)
Bacteria , Pseudomonas , Animals , Gas Chromatography-Mass Spectrometry , Proton Magnetic Resonance Spectroscopy , Temperature , Food Microbiology , Food Preservation , Colony Count, Microbial , Food Storage
12.
Int J Biol Macromol ; 264(Pt 2): 130682, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460636

ABSTRACT

Tropical fruits, predominantly cultivated in Southeast Asia, are esteemed for their nutritional richness, distinctive taste, aroma, and visual appeal when consumed fresh. However, postharvest challenges have led to substantial global wastage, nearly 50 %. The advent of edible biopolymeric nanoparticles presents a novel solution to preserve the fruits' overall freshness. These nanoparticles, being edible, readily available, biodegradable, antimicrobial, antioxidant, Generally Recognized As Safe (GRAS), and non-toxic, are commonly prepared via ionic gelation owing to the method's physical crosslinking, simplicity, and affordability. The resulting biopolymeric nanoparticles, with or without additives, can be employed in basic formulations or as composite blends with other materials. This study aims to review the capabilities of biopolymeric nanoparticles in enhancing the physical and sensory aspects of tropical fruits, inhibiting microbial growth, and prolonging shelf life. Material selection for formulation is crucial, considering coating materials, the fruit's epidermal properties, internal and external factors. A variety of application techniques are covered such as spraying, and layer-by-layer among others, including their advantages, and disadvantages. Finally, the study addresses safety measures, legislation, current challenges, and industrial perspectives concerning fruit edible coating films.


Subject(s)
Edible Films , Food Preservation/methods , Fruit , Antioxidants
13.
Food Chem ; 447: 138952, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38461720

ABSTRACT

The edible coating is proved to be a convenient approach for fruit preservation. Among these published explorations, naturally sourced macromolecules and green crosslinking strategies gain attention. This work centers on edible coatings containing Ca2+ as crosslinker for the first time, delving into crosslinking mechanisms, include alginate, chitosan, Aloe vera gel, gums, etc. Additionally, the crucial functions of Ca2+ in fruit's quality control are also elaborated in-depth, involving cell wall, calmodulin, antioxidant, etc. Through a comprehensive review, it becomes evident that Ca2+ plays a dual role in fruit edible coating. Specifically, Ca2+ constructs a three-dimensional dense network structure with polymers through ionic bonding. Moreover, Ca2+ acts directly with cell wall to maintain fruit firmness and serve as a second messenger to participate secondary physiological metabolism. In brief, coatings containing Ca2+ present remarkable effects in preserving fruit and this work may provide guidance for Ca2+ related fruit preservation coatings.


Subject(s)
Edible Films , Food Preservation , Food Preservation/methods , Calcium/analysis , Polymers/analysis , Fruit/chemistry
14.
Int J Biol Macromol ; 264(Pt 2): 130672, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462095

ABSTRACT

The long-term application of plant essential oils in food preservation coatings is limited by their poor water solubility and high volatility, despite their recognized synergistic antimicrobial effects in postharvest fruit preservation. To overcome these limitations, a Pickering emulsion loaded with thyme essential oil (TEO) was developed by utilizing hydrogen bonding and electrostatic interactions to induce cross-linking of chitosan particles. This novel emulsion was subsequently applied in the postharvest storage of strawberries. The shear-thinning behavior (flow index <1) and elastic gel-like characteristics of the emulsion made it highly suitable for spray application. Regarding TEO release, the headspace concentration of TEO increased from 0.21 g/L for pure TEO to 1.86 g/L after two instances of gas release due to the stabilizing effect of the chitosan particles at the oil-water interface. Notably, no phase separation was observed during the 10-day storage of the emulsion. Consequently, the emulsion was successfully employed for the postharvest storage of strawberries, effectively preventing undesirable phenomena such as weight loss, a decrease in firmness, an increase in pH, and microbial growth. In conclusion, the developed Pickering emulsion coating exhibits significant potential for fruit preservation applications, particularly for extending the shelf life of strawberries.


Subject(s)
Chitosan , Fragaria , Oils, Volatile , Plant Oils , Thymol , Thymus Plant , Chitosan/pharmacology , Emulsions , Food Preservation , Oils, Volatile/pharmacology , Water
15.
Food Chem ; 447: 138981, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38518613

ABSTRACT

In the current study, the preservation effect of plasma-activated water (PAW), coconut exocarp flavonoids (CF) and their combination on golden pompano fillets during refrigerated storage was investigated with emphasize on the treating sequence. PAW effectively inactivated spoilage bacteria and inhibited total volatile basic nitrogen (TVB-N) increase, while boosted the TBARS and carbonyl values. PAW+CF exerted synergistic effect on extending the period before total bacterial count and TVB-N content reaching acceptance limit than PAW or CF alone (P < 0.05). In addition, their combined treatment effectively reduced fillets discoloration and texture deterioration. Simultaneously, lipid and protein oxidation were significantly inhibited, which was comparable to CF. It was indicated that the treatment sequence of PAW and CF profoundly impact the preservation effect. Specifically, prior CF marinating followed by PAW was more effective than the opposite sequence. Thus, combination of CF followed by PAW served as promising technique for fish fillets preservation.


Subject(s)
Cocos , Food Preservation , Animals , Food Preservation/methods , Water , Fishes
16.
Molecules ; 29(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38543030

ABSTRACT

Improving the shelf lives of fruits is challenging. The biodegradable polysaccharide pullulan exhibits excellent film-forming ability, gas barrier performance, and natural decomposability, making it an optimal material for fruit preservation. To overcome problems of high cost and film porosity of existing packaging technologies, we aimed to develop pullulan-based packaging paper to enhance the shelf lives of fruits. A thin paper coating comprising a mixture of 15 wt.% pullulan solution at various standard viscosities (75.6, 77.8, and 108.5 mPa·s) with tea polyphenols (15:2) and/or vitamin C (150:1) improved the oxygen transmission rate (120-160 cm3 m-2·24 h·0.1 MPa), water vapor transmission rate (<5.44 g·mm-1 m-2·h·kPa), maximum free radical clearance rate (>87%), and antibacterial properties of base packaging paper. Grapes wrapped with these pullulan-based papers exhibited less weight loss (>4.41%) and improved hardness (>16.4%) after 10 days of storage compared to those of control grapes (wrapped in untreated/base paper). Grapes wrapped with pullulan-based paper had >12.6 wt.% total soluble solids, >1.5 mg/g soluble protein, >0.44 wt.% titratable acidity, and ≥4.5 mg 100 g-1 ascorbic acid. Thus, pullulan-based paper may prolong the shelf life of grapes with operational convenience, offering immense value for fruit preservation.


Subject(s)
Food Preservation , Fruit , Glucans , Fruit/microbiology , Preservation, Biological , Ascorbic Acid/pharmacology , Food Packaging
17.
Food Chem ; 448: 139027, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38552462

ABSTRACT

In this study, a hydrophobic and antibacterial pad was prepared to preserve Channel Catfish (Ictalurus punctatus). The pad composite the microfibrillated cellulose and ß-cyclodextrin/nisin microcapsules. The hydrophobic pad ensures a dry surface in contact with the fish, reducing microbial contamination. The pad has a low density and high porosity, making it lightweight and suitable for packaging applications, while also providing a large surface area for antibacterial activity. Results demonstrated that this antibacterial pad exhibits an ultralow density of 9.0 mg/cm3 and an ultrahigh porosity of 99.10%. It can extend the shelf life of Channel Catfish fillets to 9 days at 4 °C, with a total volatile base nitrogen below 20 mg/100 g. The study proposes a novel solution for preserving aquatic products by combining antibacterial substances with the natural base material aerogel. This approach also extends the utilization of aerogel and nisin in food packaging.


Subject(s)
Anti-Bacterial Agents , Cellulose , Food Packaging , Food Preservation , Gels , Ictaluridae , Nisin , beta-Cyclodextrins , Animals , Cellulose/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , beta-Cyclodextrins/chemistry , Nisin/chemistry , Nisin/pharmacology , Food Preservation/methods , Food Preservation/instrumentation , Food Packaging/instrumentation , Ictaluridae/microbiology , Gels/chemistry , Capsules/chemistry
18.
J Food Sci ; 89(4): 1976-1987, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38454630

ABSTRACT

Seafood is highly perishable and has a short shelf-life. This study investigated the effect of chitosan and alginate (CH-SA) coating combined with the cell-free supernatant of Streptococcus thermophilus FUA329 (CFS) as a preservative on the quailty of white shrimp (Litopenaeus vannamei) refrigerated at 4° for 0, 3, 6, 9, 12, 15 days. Freshly shrimps were randomly divided into four groups: the CFS group (400 mL); the CH-SA group (1% chitosan/1% alginate); the CFS-CH-SA group (1% chitosan/1% alginate with 400 mL CFS) are treatment groups, and the control group (400 mL sterile water). The CFS-CH-SA coating effectively suppressed microbial growth total viable count and chemical accumulation (pH, total volatile basic nitrogen, thiobarbituric acid reactive substance) compared with the control. Additionally, the CFS-CH-SA coating improved the texture and sensory characteristics of shrimp during storage. The coated shrimp exhibited significantly reduced water loss (p < 0.05). The combination of CH-SA coating with CFS treatment can extend the shelf life of shrimp. PRACTICAL APPLICATION: Recently, edible films have received more consideration as a promising method to enhance the shelf life of seafood. The presence of Lactic acid bacteria metabolites in edible films reduces spoilage and improves consumer health. Our findings encourage the application of edible coating incorporated with cell-free supernatant of Streptococcus thermophilus FUA 329 to design multifubctional foods and preserve the qualities of shrimp.


Subject(s)
Chitosan , Food Preservation , Food Preservation/methods , Alginates , Chitosan/pharmacology , Chitosan/chemistry , Streptococcus thermophilus , Life Expectancy , Water
19.
Compr Rev Food Sci Food Saf ; 23(2): e13318, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38532699

ABSTRACT

Conventional food preservation methods such as heat treatment, irradiation, chemical treatment, refrigeration, and coating have various disadvantages, like loss of food quality, nutrition, and cost-effectiveness. Accordingly, cold plasma is one of the new technologies for food processing and has played an important role in preventing food spoilage. Specifically, in-package cold plasma has become a modern trend to decontaminate, process, and package food simultaneously. This strategy has proven successful in processing various fresh food ingredients, including spinach, fruits, vegetables, and meat. In particular, cold plasma treatment within the package reduces the risk of post-processing contamination. Cryoplasm decontamination within packaging has been reported to reduce significantly the microbial load of many foods' spoilage-causing pathogens. However, studies are needed to focus more on the effects of in-package treatments on endogenous enzyme activity, pest control, and removal of toxic pesticide residues. In this review, we comprehensively evaluated the efficacy of in-package low-temperature plasma treatment to extend the shelf life of various foods. The mechanisms by which cold plasma interacts with food were investigated, emphasizing its effects on pathogen reduction, spoilage mitigation, and surface modification. The review also critically assessed the effects of the treatments on food quality, regulatory considerations, and their potential as viable technologies to improve food safety and packaging life. In-package cold plasma treatment could revolutionize food storage when combined with other sophisticated technologies such as nanotechnology.


Subject(s)
Food Packaging , Plasma Gases , Food Packaging/methods , Plasma Gases/pharmacology , Food Storage/methods , Food Preservation/methods , Food Handling
20.
Food Res Int ; 182: 114154, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38519182

ABSTRACT

Pulsed electric field (PEF) processing has emerged as an alternative to thermal pasteurization for the shelf-life extension of heat-sensitive liquids at industrial scale. It offers the advantage of minimal alteration in physicochemical characteristics and functional properties. In this study, a pilot-scale continuous PEF processing (Toutlet < 55 °C) was applied to microalgae Chlorella vulgaris (Cv) suspensions (pH = 6.5), which was proposed as a functional ingredient for plant-based foods. Cv suspensions were inoculated with three distinct food spoilage microorganisms (Pseudomonas guariconensis, Enterobacter soli and Lactococcus lactis), isolated from the Cv biomass. PEF treatments were applied with varying electric field strength Eel of 16 to 28 kV/cm, pulse repetition rate f of 100 to 140 Hz, with a pulse width τ of 20 µs and an inlet product temperature Tin of 30 °C. The aim was to evaluate the PEF-induced microbial reduction and monitor the microbial outgrowth during a 10-day cold storage period (10 °C). Maximum inactivation of 4.1, 3.7 and 3.6 logs was achieved (28 kV/cm and 120 Hz) for the investigated isolates, respectively. Under these conditions, the critical electric field strengths Ecrit, above which inactivation was observed, ranged from 22.6 to 24.6 kV/cm. Moreover, repeated PEF treatment resulted in similar inactivation efficiency, indicating its potential to enhance shelf-life further.


Subject(s)
Chlorella vulgaris , Food Preservation , Food Preservation/methods , Colony Count, Microbial , Pasteurization , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...